GENERATING VALUE WITH BIG DATA AND THE INFLUENCE OF DATA CULTURE ON DECISION-MAKING IN LARGE COMPANIES

Autores

  • Henrique Hiluey Roriz PERIN Instituto Federal do Espírito Santo - IFES https://orcid.org/0009-0008-1700-037X
  • Guilherme GUILHERMINO NETO Instituto Federal do Espírito Santo - IFES
  • Luiz Henrique Lima FARIA Instituto Federal do Espírito Santo - IFES
  • Tiago José Menezes GONÇALVES Instituto Federal do Espírito Santo - IFES

DOI:

https://doi.org/10.47682/26756552.v1i2.95

Palavras-chave:

Big data, Análise de big data, Cultura de dados, Data-driven, Tomada de decisão

Resumo

This research investigated how organizations address the challenge of generating value from the complexity of big data and analyzed whether companies with a consolidated data culture demonstrate greater efficiency in decision-making processes. To achieve these objectives, a 8-item questionnaire was applied to 60 companies selected based on their data structuring models, divided into two groups: Data-Advanced Organizations (OAD), which adopt data-driven practices, and Data-Beginner Organizations (OID), which have not yet implemented such practices. The analysis utilized graphical representations to identify challenges, benefits, and perceptions regarding data governance and strategy. Statistical proportionality tests, such as Chi-square and Fisher’s exact test, validated whether OADs rely more on data in decision-making processes and whether their ability to generate value is associated with their technical and analytical maturity. The results indicate that establishing a data culture is essential for achieving more efficient decisions and greater value generation from big data. However, the research presented limitations, such as a small sample size and the lack of financial metrics. Future studies are recommended to expand sample diversity, include indicators such as ROI and revenue, and explore differences between operational and strategic decision-making processes.

Referências

AAKER, D.; KUMAR, V.; DAY, G. Marketing research. 5. ed. New York: John Wiley & Sons, 1995.

ALVAREZ, F. J.; SANCHEZ, F. S.; BELLIDO, R. Demographic and dwelling models by artificial intelligence: urban renewal opportunities in Spanish coast. International Journal of Sustainable Development and Planning, v. 13, n. 07, p. 941–953, 30 set. 2018.

AMAZON. O que é estratégia de dados?. 2024. Disponível em: https://aws.amazon.com/pt/what-is/data-strategy/. Acesso em: 6 jun. 2024.

AKTER, S. et al. How to improve firm performance using big data analytics capability and business strategy alignment? International Journal of Production Economics, v. 182, p. 113–131, dez. 2016.

AWAN, U. et al. Big data analytics capability and decision-making: The role of data-driven insight on circular economy performance. Technological Forecasting and Social Change, v. 168, p. 120766, jul. 2021.

BANGE, C; GROSSER, T. BARC Data Culture Survey 23: How to liberalize data access to empower data users. 2023. Disponível em: https://barc.com/research/barc-data-culture-survey-23/. Acesso em: 15 mai. 2024.

BANSAL, S. K.; KAGEMANN, S. Integrating Big Data: A Semantic Extract-Transform-Load Framework. Computer, v. 48, n. 3, p. 42–50, mar. 2015.

BARC, What is data communication?. 2024. Disponível em: https://barc.com/de/glossar/data-analytics/data-communication/. Acesso em: 28 Jun. 2024.

BERISHA, B.; MËZIU, E.; SHABANI, I. Big data analytics in Cloud computing: an overview. Journal of Cloud Computing, v. 11, n. 1, p. 24, 6 ago. 2022.

CHAUHAN, P.; SOOD, M. Big Data: Present and Future. Computer, v. 54, n. 4, p. 59–65, abr. 2021.

COX, M.; ELLSWORTH, D. Application-controlled demand paging for out-of-core visualization. Proceedings. Visualization ’97 (Cat. No. 97CB36155). Anais...IEEE, [s.d.].

DEVORE, J. L. Probabilidade e estatística para engenharia e ciências. 1. ed. São Paulo: Cengage, 2019. 656 p. ISBN 978-85-221-2803-7.

DWIVEDI, Y. K. et al. Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, v. 57, p. 101994, abr. 2021.

FONSECA, J. J. S. Metodologia da pesquisa científica. Fortaleza: UEC, 2002.

FOX, J. The R Commander: A Basic Statistics Graphical User Interface to R. Journal of Statistical Software, v. 14, n. 9, p. 1–42, 2005. Disponível em: https://www.jstatsoft.org/article/view/v014i09. Acesso em: 16 nov. 2024.

GIL, A. C. Como elaborar projetos de pesquisa. 4. ed. São Paulo: Atlas, 2007

GIL, A. C. Como elaborar projetos de pesquisa. 5. ed. São Paulo: Atlas, 2010. 184 p..

GOOGLE. O que é governança de dados?. 2024. Disponível em: https://cloud.google.com/learn/what-is-data-governance?. Acesso em: 11 jul. 2024.

GUALTIERI, M. Hadoop Is Data’s Darling For A Reason. Forrester, 16 de janeiro de 2016. Disponível em: https://www.forrester.com/blogs/hadoop-is-datas-darling-for-a-reason/. Acesso em: 20 de mar. de 2024.

GUNTER, H. Como elaborar um questionário. (Série: Planejamento de Pesquisa nas Ciências Sociais, Nº 1). Brasília, DF: UnB, Laboratório de Psicologia Ambiental, 2003. Disponível em: http://beco-do-bosque.net/XTextos/01Questionario.pdf. Acesso em: 29 jun. 2013.

KISH, L. Survey sampling. New York: John Wiley & Sons, Inc., 1965.

MCDANIEL JR., C. D.; GATES, R. Fundamentos de pesquisa de marketing. 4. ed. Rio de Janeiro: LTC, 2005. 312 p.

MALHOTRA, N. K. Pesquisa de marketing: uma orientação aplicada. 6. ed. Porto Alegre: Bookman, 2012. 735 p.

MATTAR, F. N. Pesquisa de marketing: metodologia, planejamento, execução e análise. 2. ed., v. 2. São Paulo: Atlas, 1994.

MATTAR, F. Pesquisa de marketing. São Paulo: Atlas, 1996.

MATTAR, F. N. Pesquisa de marketing. 3. ed. compacta. São Paulo: Atlas, 2001. 275 p.

MICROSOFT. Relational vs. NoSQL data. 2022. Disponível em: https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native/relational-vs-nosql-data. Acesso em: 6 jun. 2024.

MINTZBERG, H.; RAISINGHANI, D.; THEORET, A. The structure of “unstructured” decision processes. Administrative science quarterly, v. 21, n. 2, p. 246, 1976.

MIRARAB, A.; MIRTAHERI, S. L.; ASGHARI, S. A. Value creation with big data analytics for enterprises: a survey. TELKOMNIKA (Telecommunication Computing Electronics and Control), v. 17, n. 6, p. 2790, 1 dez. 2019.

MISRA, N. N. et al. IoT, Big Data, and Artificial Intelligence in Agriculture and Food Industry. IEEE Internet of Things Journal, v. 9, n. 9, p. 6305–6324, 1 maio 2022.

MONTGOMERY, D. C.; RUNGER, G. C. Applied statistics and probability for engineers. 7. ed. Nashville, TN, USA: John Wiley & Sons, 2018.

MYLER, L. Better data quality equals higher marketing ROI. Disponível em: https://www.forbes.com/sites/larrymyler/2017/07/11/better-data-quality-equals-higher-marketing-roi. Acesso em: 13 abr. 2024.

NETFLIX. Research areas analytics: Driving insights from data. 2024. Disponível em: https://br.investing.com/academy/statistics/faturamento-netflix/. Acesso em: 7 jul. 2024.

NUTT, P. C. Types of Organizational Decision Processes. Administrative Science Quarterly, v. 29, n. 3, p. 414, set. 1984.

OUSSOUS, A. et al. Big Data technologies: A survey. Journal of King Saud University - Computer and Information Sciences, v. 30, n. 4, p. 431–448, out. 2018.

PARADZA, D.; DARAMOLA, O. Business Intelligence and Business Value in Organisations: A Systematic Literature Review. Sustainability, v. 13, n. 20, p. 11382, 15 out. 2021.

PUCPR. Do dado à decisão: o que é e como construir uma cultura data-driven. 2024. Disponível em: https://posdigital.pucpr.br/blog/cultura-data-driven. Acesso em: 6 jul. 2024.

REHMAN, M. H.-U.; CHANG, V.; BATOOL, A.; WAH, T. Y. Big data reduction framework for value creation in sustainable enterprises. International Journal of Information Management, v. 36, n. 6, p. 917–928, 2016.

RIALTI, R. et al. Big data and dynamic capabilities: a bibliometric analysis and systematic literature review. Management Decision, v. 57, n. 8, p. 2052–2068, 12 set. 2019.

SANTOS, A. R. Metodologia científica: a construção do conhecimento. Rio de Janeiro: DP&A, 1999.

SAMARA, B. S.; BARROS, J. C. Pesquisa de marketing: conceitos e metodologia. 4. ed. São Paulo: Pearson, 2007. 273 p.

SHARDA, R.; DELEN, D.; TURBAN, E. Business Intelligence e Análise de Dados para Gestão do Negócio. 4a ed. Porto Alegre: Bookman, 2019. 584 p.

SHIMIZU, T. Decisão nas organizações: introdução aos problemas de decisão encontrados nas organizações e nos sistemas de apoio à decisão. São Paulo: Atlas, 2001. 313 p.

SIMON, H. A. The new science of management decision. Old Tappan, NJ, USA: Prentice Hall, 1977.

TABLEAU. A Guide To Data Driven Decision Making: What It Is, Its Importance, & How To Implement It. 2024. Disponível em: https://www.tableau.com/learn/articles/data-driven-decision-making. Acesso em: 8 jul. 2024.

TABLEAU. Data culture drives data and AI success. 2024. Disponível em: https://www.tableau.com/why-tableau/data-culture. Acesso em: 15 jul. 2024.

TERA. Liderança de Dados: definindo a expertise que sua organização precisa. 2024. Disponível em: https://medium.com/somos-tera/lideran%C3%A7a-de-dados-definindo-a-expertise-que-sua-organiza%C3%A7%C3%A3o-precisa-b1dcce17f59. Acesso em: 8 jul. 2024.

DAVENPORT, T; BEAN, R. Data and AI Leadership Executive Survey 2022. Boston: [s.n.].

WANG, J. et al. Big Data Service Architecture: A Survey. School of Computer & Communication Engineering, v. 21, 2020.

Downloads

Publicado

23-12-2024

Como Citar

HILUEY RORIZ PERIN, H.; GUILHERMINO NETO, G.; LIMA FARIA, L. H.; MENEZES GONÇALVES, T. J. GENERATING VALUE WITH BIG DATA AND THE INFLUENCE OF DATA CULTURE ON DECISION-MAKING IN LARGE COMPANIES. RINTERPAP - Revista Interdisciplinar de Pesquisas Aplicadas, Cariacica (ES), Brasil, v. 1, n. 2, p. 71–100, 2024. DOI: 10.47682/26756552.v1i2.95. Disponível em: https://journals.sespted.org/rinterpap/article/view/95. Acesso em: 9 fev. 2025.